Posted by: cnpde | December 1, 2014

254A, Notes 1: Elementary multiplicative number theory

What's new

In analytic number theory, an arithmetic function is simply a function $latex {f: {bf N} rightarrow {bf C}}&fg=000000$ from the natural numbers $latex {{bf N} = {1,2,3,dots}}&fg=000000$ to the real or complex numbers. (One occasionally also considers arithmetic functions taking values in more general rings than $latex {{bf R}}&fg=000000$ or $latex {{bf C}}&fg=000000$, as in this previous blog post, but we will restrict attention here to the classical situation of real or complex arithmetic functions.) Experience has shown that a particularly tractable and relevant class of arithmetic functions for analytic number theory are the multiplicative functions, which are arithmetic functions $latex {f: {bf N} rightarrow {bf C}}&fg=000000$ with the additional property that

$latex displaystyle f(nm) = f(n) f(m) (1)&fg=000000$

whenever $latex {n,m in{bf N}}&fg=000000$ are coprime. (One also considers arithmetic functions, such as the logarithm function $latex {L(n) := log n}&fg=000000$ or the von Mangoldt function, that…

View original post 18,449 more words


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: